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Key therapeutic targets implicated 
at the early stage of hepatocellular 
carcinoma identified 
through machine‑learning 
approaches
Seyed Mahdi Hosseiniyan Khatibi 1,2,3,6, Farima Najjarian 4,6, Hamed Homaei Rad 3, 
Mohammadreza Ardalan 1, Mohammad Teshnehlab 5, Sepideh Zununi Vahed 1* & 
Saeed Pirmoradi 2*

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer. Early-stage 
detection plays an essential role in making treatment decisions and identifying dominant molecular 
mechanisms. We utilized machine learning algorithms to find significant mRNAs and microRNAs 
(miRNAs) at the early and late stages of HCC. First, pre-processing approaches, including 
organization, nested cross-validation, cleaning, and normalization were applied. Next, the t-test/
ANOVA methods and binary particle swarm optimization were used as a filter and wrapper method 
in the feature selection step, respectively. Then, classifiers, based on machine learning and deep 
learning algorithms were utilized to evaluate the discrimination power of selected features (mRNAs 
and miRNAs) in the classification step. Finally, the association rule mining algorithm was applied to 
selected features for identifying key mRNAs and miRNAs that can help decode dominant molecular 
mechanisms in HCC stages. The applied methods could identify key genes associated with the early 
(e.g., Vitronectin, thrombin-activatable fibrinolysis inhibitor, lactate dehydrogenase D (LDHD), miR-
590) and late-stage (e.g., SPRY domain containing 4, regucalcin, miR-3199-1, miR-194-2, miR-4999) of 
HCC. This research could establish a clear picture of putative candidate genes, which could be the main 
actors at the early and late stages of HCC.

Hepatocellular carcinoma (HCC) is the third cause of cancer deaths worldwide1. The scientific observa-
tions have indicated that cirrhosis2, heavy alcoholism3, smoking, lifestyle, hepatitis B and C viral infection4,5, 
hemochromatosis6, and alpha-1-antitrypsin deficiency can be important HCC risk factors. Liver function, clini-
cal expertise, availability of treatment resources, and cancer stage can affect treatment procedures. Due to the 
diagnosis of liver cancer at the late stages, the overall survival rate of HCC patients has not increased despite 
advancements in treatment7. HCC early-stage detection allows clinicians to use a wide range of treatments8, 
playing an essential role in making treatment decisions. Moreover, the identification of dominant molecular 
mechanisms at the early and late stages can improve treatment strategies.

Traditionally, clinicians utilized alpha-fetoprotein (AFP) and AFP-L3 (a glycoform of AFP) as HCC bio-
markers in most developing countries7,9; however, these biomarkers have no reliability, sufficient sensitivity, 
and specificity8. Another biomarker was Des-gamma-carboxyprothrombin (DCP), which is upregulated at late 
stages10–12. In recent years, next-generation sequencing (NGS) technology and bioinformatics methods have 
provided promising ways for the identification of biomarkers13. Many studies detected the expression of cancer-
associated genes and indicated their vital role in hepatocarcinogenesis. Previous studies aimed to identify the 
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differentially expressed RNA transcripts, genes, or miRNAs in cancer versus normal or cancer versus other liver 
diseases.

Recently, Artificial Intelligence has succeeded in many applications, such as health care14. In this regard, a few 
studies proposed machine learning methods to predict the HCC stages based on the genomic profile of samples15. 
Sathipati et al. suggested a support vector machine-cancer stage prediction method and a bi-objective genetic 
algorithm for miRNA selection. Test accuracy and AUC (area under the receiver operating characteristic curve) 
of 74.28%, and 0.73 for early (stage I, II) and late (stage III, IV) stages of discrimination were reported based on 
miRNA data, respectively16. Kaur et al. investigate mRNA and methylation data to distinct early (stage I) and 
late (stage II, III, IV) stages. They utilized different feature selection and classification algorithms and compared 
the obtained result. Accuracy and AUC of 76% and 0.79 were reported, respectively17. In these studies, authors 
applied hold-out cross-validation for error estimation with an 80:20 ratio for training and test splitting. Moreo-
ver, a machine learning approach was applied to the early diagnosis of HCC and classifying patients with HCC 
and without HCC (CwoHCC)18. In another study, authors utilized machine learning and bioinformatic tools 
to diagnose HCC patients (HCC and non-HCC)19. Książek et al.20 used a two-level feature selection method 
(NCA-GA-SVM) for HCC fatality prognosis prediction. Recently, Liu et al.21 proposed a deep-learning model 
to predict HCC recurrence based on pathology images.

In this study, we applied machine learning algorithms to investigate significant mRNAs and miRNAs sepa-
rately. First, we applied pre-processing approaches, including organization, nested cross-validation, cleaning, and 
normalization. Next, the t-test/ANOVA methods and binary particle swarm optimization (PSO) were used as a 
filter and wrapper method in the feature selection step, respectively. Then, a classifier based on machine learning 
and deep learning algorithms was utilized to evaluate the selected features (mRNAs and miRNAs) in the clas-
sification step. Finally, the association rule mining algorithm was applied to selected features for identifying key 
mRNAs and miRNAs that can help decode dominant molecular mechanisms at the early and late stages of HCC.

Results
Our primary objective was to identify the significant mRNAs/miRNAs that can classify patients at early-stage 
and late-stage with the best accuracy in the first phase. Decoding the molecular mechanisms of early- and late-
stages and identifying their top mRNAs/miRNAs were our next objectives. In this regard, we applied four steps 
to mRNA/miRNA data, including preprocessing, feature selection, classification, and association rule mining as 
shown in Fig. 1. Moreover, we used Python and its libraries, including Numpy, Pandas, Matplotlib, Sickit-learn, 
Scipy, Pytorch, Pyswarms, and Mlxtend to implement the proposed algorithms.

In the feature selection step, t-test (filter method) and binary PSO (wrapper method) were used for selecting 
significant mRNAs and miRNAs. Finally, 77 miRNAs among 1881 miRNAs were selected, presented in Table S1. 
Furthermore, 123 mRNAs among 60,483 mRNAs were selected (Table S2). The binary PSO parameters, including 
α, β, θ, number of particles, and number of iterations, were set to 2, 2, 0.9, 35, and 100, respectively.

In the classification step, we employed seven classifiers, including SVM, KNN, NB, RF, deep Self-Organiz-
ing Auto-Encoder (SOAE), Logistic Regression, and XgBoost to evaluate the importance of selected features 
(mRNAs/miRNAs) based on their discrimination power between early and late stages. The average performance 
of each classifier was represented using accuracy, F1-score, MCC, sensitivity, and specificity for train/validation/
test folds of miRNA and mRNA data in Tables 1 and 2, respectively. Moreover, we reported the performance of 
classifiers based on both selected mRNAs and miRNAs by concatenating chosen features (Table 3).

The performance of classifiers based on miRNA features illustrated that SVM with 70% accuracy and 0.7 
AUC was the best model. SVM was also the best classifier in mRNA features with 74.7% accuracy and 0.75 AUC. 
In addition, concatenating mRNAs and miRNAs improved the classification performance with an accuracy of 
76.9 and an AUC of 0.77. Also, all measures were calculated based on the nCV, which is the most accurate error 
estimation approach in the real world. In the association rule mining step, we discovered interesting relations 
including feature(s)-feature(s) (mRNAs/miRNAs) and feature(s)-target (early-stage/late-stage). Moreover, we 
selected significant mRNAs/miRNAs based on the repeat count of these features in generated rules and studied 
their role in the early and late stages of HCC tumors.

miRNA data association rule mining analysis.  Twenty-eight top miRNAs involved in the consequence 
of early-stage and late-stage rules were presented based on the repeat counts in Table 4. In miRNA data, param-
eters of the algorithm, including lift (association rule), max-length (maximum length of frequent itemset), and 
min-support (frequent itemset) were set to 1.1, 4, and 0.3, respectively. Also, twenty of the top early-stage and 
late-stage rules were presented as the if–then form in Supplementary Tables S3 and S4, respectively.

In Supplementary Fig. S1a,b, the Spearman correlation for five top miRNAs of early-stage and late-stage was 
shown based on the heatmap plot, respectively. Also, the strength distribution of early-stage and late-stage asso-
ciation rules according to their lift, support, and confidence was shown in Supplementary Fig. S1c,d, respectively. 
We displayed the repeat count of 28 top miRNAs as ring bar plots in Supplementary Fig. S1e,f for early-stage and 
late-stage rules, respectively. Moreover, the boxplots of the top three miRNAs with a high repeat count at the 
early-stage and late-stage association rules were shown in Supplementary Fig. S2a,b, respectively.

In addition, we showed features-phenotype associations according to association rules in the graph network 
(Fig. 2). In Fig. 2a, it is obvious that early-stage phenotype, based on early-stage association rules, is highly 
dependent on miR-590, miR-23a, miR-4443, and miR-4764. In Fig. 2b, it is obvious that the late-stage phenotype 
is dependent on miR-3199-1 and miR-194.2.

The hsa-mir-590 was the most frequent itemset in early-stage association rules (1330 repeat counts). There-
fore, this miRNA was investigated based on association rules in the graph network to find its relation with other 
miRNAs (Fig. 3). As shown in Fig. 3a, it is obvious that the most frequent miRNA (miR-590) at the early-stage 
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association rules is associated with miR-3691, miR-21, and miR-126. The hsa-mir-3199-1 was the most frequent 
itemset in late-stage association rules (with 351 repeat counts) that has a high dependency on miR-21 and miR-
126 (Fig. 3b).

mRNA data association rule mining analysis.  Twenty-eight top mRNAs involved in the consequence 
of early-stage and late-stage rules were presented based on the repeat counts in Table 4. In mRNA data, param-
eters of the algorithm, including lift, max-length, and min-support were set to 1.1, 4, and 0.2, respectively. More-

Figure 1.   The overview of the proposed method. Five main steps were applied to miRNA and mRNA 
expression data separately, including reading, preprocessing, feature selection, classification, and association rule 
mining. (1) In the reading step, each dataset was downloaded from the TCGA repository. (2) The preprocessing 
step includes two sub-steps, nested cross-validation, and normalization. (3) The feature selection step contains 
two sub-steps: the filter method based on t-test for mRNA data and ANOVA for miRNA data, and the wrapper 
method based on binary particle swarm optimization (PSO) for both mRNA and miRNA data, in which 
candidate miRNAs/mRNAs with more relevance to early-stage and late-stage Hepatocellular Carcinoma (HCC) 
were selected. (4) multiclassifier models were utilized to evaluate the discrimination power of selected miRNAs/
mRNAs. (5) The Association Rule Mining method discovered the hidden relationship between selected 
miRNAs/mRNAs at the early-stage and late-stage of HCC in the first level and the complex relationship among 
selected miRNAs/mRNAs in the second level.
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over, twenty of the top early-stage and late-stage rules were presented as the if–then form in Supplementary 
Tables S5 and S6, respectively.

Table 1.   The performance of classifiers based on 77 selected miRNAs. Significant values are in bold. AUC: The 
area under the curve, ROC: receiver operating characteristic curve, MCC: Matthews Correlation Coefficient, 
Sn: sensitivity, Sp: specificity.

Classifier Folds Accuracy AUC-ROC F1-score (Early stage) F1-score (Late stage) MCC Sn Sp

SVM

Train 88.8 0.88 0.89 0.88 0.78 0.81 0.95

Validation 71.3 0.71 0.72 0.7 0.43 0.67 0.75

Test 70 0.7 0.7 0.68 0.4 0.68 0.73

KNN

Train 72.2 0.72 0.75 0.67 0.47 0.56 0.87

Validation 56.2 0.56 0.62 0.46 0.14 0.39 0.74

Test 57.1 0.56 0.63 0.45 0.14 0.37 0.75

NB

Train 70 0.7 0.74 0.63 0.43 0.51 0.89

Validation 66.1 0.66 0.7 0.59 0.34 0.5 0.81

Test 66.3 0.65 0.67 0.59 0.32 0.53 0.78

RF

Train 91.4 0.91 0.91 0.9 0.83 0.85 0.97

Validation 65 0.65 0.67 0.61 0.3 0.59 0.74

Test 65 0.66 0.67 0.61 0.32 0.58 0.74

AE

Train 75 0.74 0.75 0.74 0.5 0.71 0.78

Validation 66 0.66 0.67 0.64 0.33 0.62 0.7

Test 65.1 0.65 0.66 0.62 0.3 0.6 0.7

Logistic regression

Train 82.7 0.82 0.82 0.82 0.65 0.8 0.84

Validation 62.7 0.63 0.63 0.61 0.26 0.6 0.65

Test 62.3 0.62 0.62 0.6 0.24 0.6 0.64

XgBoost

Train 98.5 0.98 0.98 0.98 0.97 0.97 0.99

Validation 64.2 0.64 0.64 0.63 0.29 0.61 0.67

Test 63 0.63 0.63 0.6 0.26 0.59 0.66

Table 2.   The performance of classifiers based on 123 selected mRNAs. Significant values are in 
bold. AUC: The area under the curve, ROC: receiver operating characteristic curve, MCC: Matthews 
Correlation Coefficient, Sn: sensitivity, Sp: specificity.

Classifier Folds Accuracy AUC-ROC F1-score (Early stage) F1-score (Late stage) MCC Sn Sp

SVM

Train 93 0.93 0.93 0.93 0.86 0.95 0.91

Validation 77.6 0.77 0.77 0.77 0.55 0.74 0.8

Test 74.7 0.75 0.74 0.74 0.5 0.73 0.76

KNN

Train 70 0.7 0.6 0.76 0.46 0.94 0.46

Validation 60 0.6 0.44 0.7 0.36 0.9 0.31

Test 59 0.58 0.41 0.67 0.2 0.85 0.31

NB

Train 79 0.79 0.79 0.78 0.58 0.77 0.81

Validation 70 0.7 0.72 0.68 0.42 0.64 0.77

Test 68 0.7 0.7 0.62 0.38 0.59 0.78

RF

Train 92.3 0.92 0.92 0.92 0.84 0.89 0.95

Validation 65.3 0.65 0.66 0.64 0.31 0.62 0.68

Test 63.6 0.64 0.63 0.63 0.28 0.6 0.68

AE

Train 79.5 0.79 0.79 0.79 0.59 0.78 0.8

Validation 71.4 0.71 0.71 0.71 0.43 0.7 0.72

Test 70 0.71 0.7 0.7 0.42 0.68 0.73

Logistic regression

Train 95.2 0.95 0.95 0.95 0.9 0.95 0.94

Validation 68.7 0.68 0.68 0.68 0.37 0.68 0.68

Test 67.7 0.68 0.65 0.69 0.36 0.71 0.64

XgBoost

Train 92.4 0.92 0.92 0.92 0.85 0.89 0.94

Validation 60 0.6 0.6 0.58 0.2 0.57 0.62

Test 61.2 0.61 0.59 0.61 0.23 0.62 0.61



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3840  | https://doi.org/10.1038/s41598-023-30720-x

www.nature.com/scientificreports/

In Supplementary Fig. S3a,b, the Spearman correlation for five top mRNAs of early-stage and late-stage was 
shown based on the heatmap plot, respectively. The strength distribution of early-stage and late-stage association 
rules in line with their support, lift, and confidence was demonstrated in Supplementary Fig. S3c,d, respectively. 
We displayed the repeat count of 28 top mRNAs as ring bar plots in Supplementary Fig. S3e,f for early-stage and 
late-stage rules. Also, the boxplots of three top mRNAs with a high repeat count at the early-stage and late-stage 
association rules were shown in Supplementary Fig. S2c,d, respectively.

In addition, we showed features-phenotype associations based on association rules in the graph net-
work (Fig.  4). Early-stage phenotype had a high dependency on ENSG00000109072 (Vitronectin) and 
ENSG00000175600 (SUGCT, succinyl-CoA:glutarate-CoA transferase), Fig. 4a. In Fig.  4b, it is obvious 
that late-stage phenotype, based on late-stage association rules, is highly dependent on ENSG0000055957, 
ENSG00000178301, ENSG00000130988, ENSG00000173269, ENSG0000080618, and ENSG00000116816.

Vitronectin was the most frequent itemset in early-stage association rules (with 1533 repeat counts). Hence, 
to investigate its associations with other features, its relations based on association rules were studied in the 
graph network (Fig. 5). In Fig. 5a, it is noticeable that Vitronectin, the most frequent mRNA at the early-stage 
association rules, is dependent on ENSG00000125730 (Complement C3). Furthermore, the ENSG00000176422 
(SPRY domain containing 4) was the most frequent itemset with 7297 repeat counts in late-stage association 
rules. In Fig. 5b, it is obvious that the SPRY domain containing 4, the most frequent mRNA in the late-stage 
association rules, is associated with ENSG00000017248, ENSG000000137806, and ENSG000000166816. More 
in-depth biological functions of these findings are provided in the “Discussion” section.

Discussion and conclusion
Accurate prediction and stage classification of HCC are vital for the management of patients since the proper 
HCC treatment decisions are impacted by the degree of liver impairment and tumor stage. In this study, aber-
rantly expressed mRNA and microRNA patterns were identified by deep learning that can discriminate early stage 
from the late stage of cancerous HCC with high accuracy. Utilizing ARM analysis, top candidate mRNAs and 
microRNAs were found in early and late HCC association rules. Vitronectin, thrombin-activatable fibrinolysis 
inhibitor (TAFI), lactate dehydrogenase D (LDHD), and miR-590 were identified as top transcripts involved 
at the early stage of HCC. A SPRY domain containing 4, regucalcin, and miR-3199-1 were identified to play 
important roles at the late stage of HCC.

The crosstalk between cancer cells and their microenvironment is the first stage in the expansion of metastasis. 
In the present study, vitronectin was the first identified mRNA by association rule mining to be implicated at the 
early stage of HCC. Vitronectin is an adhesive multifunctional glycoprotein that links cells to the extracellular 
matrix (ECM) via different ligands such as urokinase plasminogen activator receptor (uPAR), plasminogen 
activator inhibitor-1 (PAI-1), and integrins. Vitronectin is mainly synthesized by hepatocytes22 and plays major 
roles in cell growth, cell adhesion, differentiation, progression, migration, regulation of the innate immune 

Table 3.   The performance of classifiers based on 200 selected mRNAs and miRNAs. Significant values are 
in bold. AUC: The area under the curve, ROC: receiver operating characteristic curve, MCC: Matthews 
Correlation Coefficient, Sn: sensitivity, Sp: specificity.

Classifier Folds Accuracy AUC-ROC F1-score (Early stage) F1-score (Late stage) MCC Sn Sp

SVM

Train 96.1 0.96 0.96 0.96 0.92 0.94 0.97

Validation 75.4 0.75 0.76 0.74 0.51 0.7 0.8

Test 76.9 0.77 0.78 0.74 0.54 0.7 0.83

KNN

Train 76.2 0.76 0.72 0.79 0.54 0.88 0.63

Validation 64 0.64 0.59 0.68 0.29 0.79 0.48

Test 63.2 0.64 0.56 0.67 0.29 0.8 0.47

NB

Train 78.7 0.76 0.8 0.72 0.56 0.59 0.93

Validation 68 0.67 0.72 0.61 0.38 0.5 0.85

Test 67.7 0.67 0.63 0.64 0.36 0.64 0.71

RF

Train 94 0.94 0.94 0.93 0.83 0.9 0.97

Validation 67.8 0.68 0.7 0.64 0.36 0.6 0.76

Test 69.5 0.69 0.71 0.66 0.4 0.63 0.75

AE

Train 82 0.81 0.82 0.81 0.64 0.8 0.84

Validation 74 0.74 0.74 0.73 0.48 0.72 0.76

Test 75 0.74 0.76 0.72 0.5 0.7 0.79

Logistic regression

Train 100 1 1 1 1 1 1

Validation 71 0.7 0.7 0.7 0.41 0.71 0.7

Test 74.7 0.74 0.75 0.73 0.49 0.75 0.74

XgBoost

Train 95 0.95 0.95 0.94 0.9 0.91 0.97

Validation 64.6 0.65 0.65 0.62 0.3 0.6 0.69

Test 63 0.63 0.64 0.6 0.26 0.6 0.65
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Early-stage rules Late-stage rules

miRNA ID Repeat count miRNA ID Repeat count

hsa-mir-590 1330 hsa-mir-3199-1 351

hsa-mir-23a 827 hsa-mir-194-2 168

hsa-mir-4443 662 hsa-mir-4999 108

hsa-mir-3691 448 hsa-mir-885 85

hsa-mir-877 447 hsa-mir-151b 70

hsa-mir-331 427 hsa-mir-4654 52

hsa-mir-6515 396 hsa-mir-216b 38

hsa-mir-629 376 hsa-mir-22 37

hsa-mir-4764 355 hsa-mir-126 33

hsa-mir-7850 273 hsa-mir-3926-1 19

hsa-let-7e 256 hsa-mir-4526 18

hsa-mir-4523 238 hsa-mir-330 17

hsa-mir-1289-1 213 hsa-mir-641 17

hsa-mir-1255a 212 hsa-mir-3622a 15

hsa-mir-6888 211 hsa-mir-4673 13

hsa-mir-6801 206 hsa-mir-6845 13

hsa-mir-4752 206 hsa-mir-548v 12

hsa-mir-4487 192 hsa-mir-6728 12

hsa-mir-5706 179 hsa-mir-3155a 12

hsa-mir-95 171 hsa-mir-3936 11

hsa-mir-423 166 hsa-mir-6783 10

hsa-mir-4746 165 hsa-mir-4735 10

hsa-mir-183 158 hsa-mir-548s 9

hsa-mir-1254-2 145 hsa-mir-3680-1 9

hsa-mir-643 141 hsa-mir-3926-2 9

hsa-mir-561 133 hsa-mir-1257 9

hsa-mir-4478 127 hsa-mir-4757 9

hsa-mir-658 121 hsa-mir-124-1 9

mRNA ID Repeat count mRNA ID Repeat count

ENSG00000109072.12 1553 ENSG00000176422.12 7297

ENSG00000080618.12 1398 ENSG00000130988.11 7086

ENSG00000166816.12 1039 ENSG00000080618.12 6969

ENSG00000137806.7 931 ENSG00000109072.12 6949

ENSG00000146416.15 254 ENSG00000166816.12 6871

ENSG00000130307.10 254 ENSG00000137806.7 6668

ENSG00000255987.1 250 ENSG00000055957.9 6661

ENSG00000245954.5 250 ENSG00000036473.6 6372

ENSG00000245164.5 250 ENSG00000167711.12 6355

ENSG00000236213.1 250 ENSG00000125730.15 6042

ENSG00000233387.1 250 ENSG00000146416.15 5915

ENSG00000211751.6 250 ENSG00000161944.15 5723

ENSG00000211749.1 250 ENSG00000121410.10 5706

ENSG00000246084.2 250 ENSG00000188338.13 5588

ENSG00000163815.5 250 ENSG00000163631.15 5531

ENSG00000237702.2 250 ENSG00000244414.5 5256

ENSG00000124203.5 247 ENSG00000147647.11 5243

ENSG00000113263.11 247 ENSG00000139597.15 5194

ENSG00000264468.1 247 ENSG00000167701.12 5162

ENSG00000010319.5 237 ENSG00000134240.10 5075

ENSG00000178343.4 233 ENSG00000185305.9 4933

ENSG00000273328.4 229 ENSG00000172482.4 4890

ENSG00000264419.1 225 ENSG00000178301.3 4460

ENSG00000197921.5 219 ENSG00000213995.10 4328

ENSG00000270412.1 216 ENSG00000157379.12 4248

ENSG00000174990.4 213 ENSG00000154734.13 4230

Continued
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system, complement activation, and angiogenesis under different biological and pathological circumstances23. 
Moreover, vitronectin participates in other biological processes such as controlling tissue remodeling, wound 
healing, and coagulation pathway (fibrinolysis and thrombosis). Some tumor cells have been reported to secrete 
vitronectin24,25 to promote ECM degradation and cell migration.

The role of vitronectin in the pathogenesis of HCC has been reported previously. Cytokines and/or growth fac-
tors can stimulate the synthesis and secretion of vitronectin in hepatocarcinoma cells26 and promote the adhesion 
and migration of cancer cells27. Within the liver tumor microenvironment, expressed vitronectin can support the 
recruitment and preservation of effector lymphocytes by a uPAR-mechanism24. uPAR is an anchored receptor, 
interacting with uPA and some molecules, such as vitronectin and integrins. Evidence indicates that in different 
cancers, the uPAR-uPA system (by activating plasminogen and fibrinolysis) is linked with tumor progression, 
peritoneal dissemination, and metastasis28. Abnormal levels of uPAR might induce EMT by vitronectin binding 
and easing tumor invasion and metastasis29. An increased serum level of vitronectin represents high diagnostic 
and prognostic values for HCC30 since it is associated with clinicopathological factors and early recurrence31, 
cell migration27, and the malignant growth of the tumor. Vitronectin when freed from the cancer cells complex 
guarded by fibrinogen, functions as a pro-migratory factor for directing metastasis of cancer cells to low-fibrin-
ogen body cavities or lymphatics in a uPAR-dependent manne32. Suppression of vitronectin can inhibit HCC 
in vitro and in vivo33, therefore, it can potentially be considered a therapeutic target for the treatment of HCC.

Cases with advanced HCC have irregular fibrinolysis and coagulation that is associated with tumor progres-
sion where cancer-associated thrombosis is an important cause of mortality. Venous thromboembolism, mainly 
portal vein tumor thrombus, is a challenging and common complication in the HCC that can be the earliest sign 
of an underlying malignancy34,35; it indicates a worse prognosis and less tolerance to treatment. In this regard, 
thrombin-activatable fibrinolysis inhibitor (TAFI) was identified as the second top transcript at an early stage 
of HCC by our analysis. TAFI, also called carboxypeptidase B2, is a plasma glycoprotein that is activated by 
plasmin or thrombin during the coagulation cascade. It acts as a molecular link between fibrinolysis and coagu-
lation and can also regulate the interaction between inflammation and coagulation36. The binding of thrombin 
to thrombomodulin, a regulator of hemostasis that plays an anti-metastatic role in cancer, is essential for TAFI 
activation. An elevated level of TAFI is associated with several types of cancer and a more advanced cancer 
stage37–39, signifying that TAFI can play a role in the pathogenesis of thrombosis in cancer. Beyond activation of 
systemic coagulation, TAFI secretion from cancer cells elevates the intra-tumoral deposition of fibrin, promoting 
the growth and dissemination of tumor cells40. It is proposed that the production of TAFI can be mediated by 
directly malignant cells or indirectly by liver/endothelial cells that are induced by cancer-induced inflammatory 
cytokines. Modulation of TAFI may hinder migration and invasion of cancer cells41,42; therefore, TAFI can be 
another valuable molecular target for the treatment of HCC.

Lactate dehydrogenase D (LDHD) was the 3rd identified mRNA at the early stage of HCC in this study. It is 
responsible for the mitochondrial metabolism of D-lactate (a less common form of lactate) in humans43 and is 
supposed to produce by cancer cells44. The LDHD preferentially uses NADPH as a coenzyme that differs from the 
coenzyme that is used by other LDHs (A–C). In cancer cells, the mitochondrial LDHD metabolism is more active 
than in normal cells45 and its elevated level was detected in clear cell renal cell carcinoma46, prostate cancer47, 
and uterine sarcoma48. The methylglyoxal (MG) pathway produces an end-product, LDHD, to eliminate the 
toxic glycolysis-derived MG49, fatty acid synthesis, and scavenge reactive oxygen species, all of which are vital 
for cancer cell proliferation and viability47. Based on the available studies, D- lactate metabolism can represent 
a target for the development of an anticancer therapeutic strategy in the HCC.

NADH dehydrogenase 1 alpha subcomplex assembly factor 1 (NDUFAF1), the 4th identified mRNA, is a 
chaperone protein in mitochondria that are implicated in the assembly of the NADH50. Its downregulation is 
connected with the recurrence of HCC51.microRNAs (miRs) are non-coding, small RNAs that regulate gene 
expression negatively. Their abnormal expression, as oncogenes or tumor suppressors, is involved in the initia-
tion, development, and metastasis of HCC. Evidence suggests that certain subsets of miRs can be therapeutic 
targets for HCC. In our association rule mining analysis, top miRs including miR-590, miR-23a, miR-4443, 
miR-3691, and miR-877 were identified to be involved at the early stage of the HCC, the roles of which have 
been reported previously. miR-590 plays a tumor suppressor role in HCC by targeting a variety of transcripts 
such as transcriptional enhancer activator domain 1 (TEAD1)52, Wnt pathway53, TGF-beta RII54, and ROCK255. 
A bioinformatics analysis in HCC cell lines indicated that SOX2, CX3CL1, E-cadherin, N-cadherin, and FOXA2 
are the potential downstream target genes of miR-590-3p in HCC56. This microRNA can be a potential target 
molecule for the treatment of HCC.

This work has some limitations. We did not validate the results on other cancer genomic datasets including, 
gene expression omnibus (GEO). It is suggested to validate the results in other datasets in future works. Further 
bioinformatics analysis is needed to be performed to find the targets of the identified microRNAs and to under-
stand their correlations with the identified mRNAs.

Identification of therapeutic targets is essential for the effective development of drugs for HCC. In this study, 
we applied an AI-based framework to highlight putative mRNA and microRNA targets for HCC. The applied 
methods could identify key genes associated with the early (e.g., Vitronectin, TAFI, LDH-D, miR-590) and 
late-stage (e.g., SPRY domain containing 4, regucalcin, miR-3199-1, miR-194-2, miR-4999) of HCC. Applying 

Table 4.   Top miRNAs and mRNAs based on repeat count in early-stage and late-stage rules.

mRNA ID Repeat count mRNA ID Repeat count

ENSG00000231690.2 213 ENSG00000173269.12 4134

ENSG00000272789.1 204 ENSG00000170989.8 3992
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Figure 2.   Graph network of miRNAs at early- and late-stage of HCC. Graph network of (a) early-stage related 
association rules (with lift > 1.16) and (b) late-stage related association rules (with lift > 1.2), in which the early-
stage phenotype, its rules, and related miRNAs were presented, by orange, yellow, and blue colors, respectively. 
Python programming language (version 3.9) and Matplotlib library (version 3.6.0) were used to draw the plots, 
all of them are open sources.
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Figure 3.   Graph network of has-mir-590 and has-mir-3199-1 in HCC. Graph network of (a) has-mir-590 
(with lift > 1.14) and (b) has-mir-3199-1 (with lift > 1.126) related association rules, in which the has-mir-590 
and has-mir-3199-1, their rules, and their related miRNAs were presented, by orange, yellow, and blue colors, 
respectively. Python programming language (version 3.9) and Matplotlib library (version 3.6.0) were used to 
draw the plots, all of them are open sources.
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Figure 4.   Graph network of mRNAs at early- and late-stages of HCC. Graph network of (a) early-stage related 
association rules (with lift > 1.21) and (b) late-stage related association rules (with lift > 1.38), in which the early-
stage phenotype, its rules, and related mRNAs were presented, by orange, yellow, and blue colors, respectively. 
Python programming language (version 3.9) and Matplotlib library (version 3.6.0) were used to draw the plots, 
all of them are open sources.
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Figure 5.   Graph network of Vitronectin and SPRY domain containing 4 in HCC. (a) Graph network of 
Vitronectin (with lift > 1.42) related association rules, in which the Vitronectin, its rules, and related mRNAs 
were presented, by orange, yellow, and blue colors, respectively. Vitronectin, the most frequent mRNA in the 
early-stage association rules, has a high dependency on ENSG00000125730 (Complement C3). (b) Graph 
network of the SPRY domain containing 4 (with lift > 1.46) related association rules, in which the SPRY domain 
containing 4, its rules, and related mRNAs were presented, by orange, yellow, and blue colors, respectively. 
Python programming language (version 3.9) and Matplotlib library (version 3.6.0) were used to draw the plots, 
all of them are open sources.
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targeted molecular therapy at an early stage and proper time will improve the outcome of patients with HCC and 
lessen their mortality rate. This research could establish a likely clear picture of putative candidate genes which 
could be the main actors at the early and late-stage of HCC.

Methods
Dataset.  We obtained the mRNA and miRNA profiles of HCC samples from The Cancer Genome Atlas 
(TCGA) database; which is accessible in the GDC data portal (https://​portal.​gdc.​cancer.​gov/). Furthermore, 
clinical data were downloaded to extract the sample’s HCC stage based on its Biospecimen Core Resource ID. 
The mRNA expression was reported in terms of FPKM values for 60,483 RNA transcripts. In the miRNA profile, 
1881 miRNA expression values were recorded using the Illumina HiSeq 2000 platform. The HCC stage system 
was defined based on the TNM system; (T) the size of the primary tumor, (M) the distant metastasis, and (N) 
the spread of cancer to lymph nodes. In this study, we considered stage I as an early-stage class and stages II, 
III, and IV as a late-stage class. The information on mRNA/miRNA data is displayed in Table 5 in more detail.

Method
The whole process was displayed in Fig. 1. The proposed algorithms were applied to mRNA and miRNA data 
separately.

In the pre-processing step, first, we organized the mRNA and miRNA data into a matrix form with 381/382 
rows and 60,483/1881 columns for mRNA/miRNA data that present the number of samples and features, respec-
tively. Next, the nested cross-validation (CV) technique was applied to data for accurate error estimation in 
the real world. In the nested CV, the number of folds in the outer and inner loops were considered 10 and 5, 
respectively. Then, features with the same value in all samples of training folds of the inner loops were removed. 
Finally, z-score and min–max methods were applied for normalization in feature selection/classification and 
association rule mining steps, respectively. In the z-score, we mapped the distribution of features into the normal 
distribution, and in the min–max, we scaled features into the [0 1] range.

In the feature selection step, filter and wrapper methods were applied. The filter methods reduce the number 
of features (mRNAs/miRNAs) by removing the irrelevant attributes and decreasing computational cost and time 
for the wrapper step. These methods evaluate features individually in the selection procedure and are classifier-
independent. In the filter method, T-test and ANOVA were used for mRNA and miRNA data based on their 
performance in feature selection, respectively. We applied filter methods to training folds of each inner loop, and 
we selected 25 top features based on their p-values. Next, this process was repeated ten (tenfold in outer-loop) 
products five (fivefold in inner-loop) times. Finally, 261 mRNAs and 150 miRNAs were selected based on the 
union of selected features obtained from training folds of inner-outer loops.

The wrapper methods considered the interaction of features and due to using the classifier in the selection 
procedure, they are classifier-dependent. We applied binary particles swarm optimization (PSO) for feature 
selection as a wrapper method. In binary PSO, the support vector machine (SVM) was utilized for the fitness 
function evaluation. Due to being robust and reliable, we defined the fitness function based on AUC, shown in 
Eq. (1). Besides, the fitness function value, including mean and standard deviation of AUC, was calculated based 
on inner validation folds of each outer fold. Ultimately, 123 significant mRNAs and 77 miRNAs were selected 
based on binary PSO output.

In the classification step, we evaluated the discrimination power of selected features (mRNAs/miRNAs) by 
classifying early-late stages groups. The performance of the classifier represents how much-selected features 
are significant. SVM, random forest (RF), K-nearest neighbor (KNN), Naive Bayes (NB), Deep self-organizing 
auto-encoder (SOAE), logistic regression (LR), and XgBoost were used for the classification task. Furthermore, 
the performance of classifiers was reported using accuracy, AUC, MCC, F1-score, sensitivity, and specificity.

In the next step, significant relationships were discovered by association rule mining. We extracted associa-
tion rules concerning selected mRNAs/miRNAs and early/late HCC stage groups. In this regard, the early/late 
stages group was added as a new feature to mRNA/miRNA data, and features (mRNA/miRNA) were categorized 
into three parts, namely low, medium, and high expression levels. Next, the FP-Growth algorithm was utilized 
to generate association rules in two phases, including frequent itemsets and rules generation. Next, early and 
late stages association rules were obtained based on the consequent part of rules with early and late-stage values, 
respectively. Then, we studied the antecedent part of early-stage association rules and reported mRNAs/miRNAs 
based on their repeat count in early-stage association rules. Finally, we studied five top miRNAs/mRNAs of early-
stage and late-stage, based on the repeat count, more in-depth from a biological point of view.

The concept of the above algorithms was explained comprehensively in the following sections. In addition, 
the output of each step was reported and displayed in the “Result” section.

(1)
fitness value =

(

1−mean(AUC in all validation folds
)

+mean
(

standard deviation of AUC in all validation folds
)

Table 5.   Information of mRNA and miRNA data.

mRNA data miRNA data

Early-stage Late-stage Early-stage Late-stage

189 192 190 192

https://portal.gdc.cancer.gov/
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Nested cross‑validation.  Feature selection and classification are the main actors in the machine learning 
and data mining areas. The quality of the classifier is dependent on the quality of selected features. The classi-
fier performance is calculated based on testing data, which is not used for training and validating the model. 
Combining too many irrelevant features may lead to low generalization in testing data and high variance error 
estimation (overfitting) in the training process. In contrast, a lack of significant features may lead to high bias 
error estimation (underfitting). In this regard, the precise error estimation method plays a crucial role in clas-
sification and feature selection procedures.

Cross-validation (CV) is a fundamental action for the classifier accuracy/error estimation in a given dataset 
by splitting data into training and testing sets. Various versions of CV have been implemented to apply in feature 
selection and classifier parameters tuning, including leave-one-out CV, repeated double CV, and nested CV. The 
nested CV is a reliable way for classifier accuracy/error estimation57. The data is split into k outer folds in nCV 
and the remaining k-1 folds were merged and split into inner folds for inner training and validation. Training 
outer folds, including inner training folds and validation folds, are used for feature selection and model parameter 
tuning. Finally, general classifier accuracy/error is estimated based on testing outer folds.

z‑score and min–max normalization.  Z-score and min–max normalization are implemented by Eqs. 
(2) and (3), respectively. In Eq. (2), µ and σ are the mean and standard deviation values of x , and in Eq. (3), min 
and max are the minima and maximum values of x (feature). The Z-score process alters data distribution and 
converts it to normal. While the min–max method does not change data distribution and only scales data to the 
[0 1] range.

T‑test and ANOVA.  The t-test and ANOVA are a type of statistical tests employed to compare the mean 
of two groups. They are parametric statistical hypotheses, which are widely used in medical data. In parametric 
methods, there are some assumptions about the distribution of probability variables and parameters of the dis-
tribution. Conditions of normality, equal variance, and independence of samples are the principal assumptions 
in the t-test.

In the t-test method58, the t-statistic, based on Eq. (4), is calculated.

In Eq. (4), xi , S2i  , ni , and µi is the sample mean, sample variance, the number of samples, and ith population 
mean, respectively. Equation (4) converts to Eq. (5) by considering µ1 − µ2 = 0 based on the null hypothesis.

In the ANOVA method59, F-statistic, based on the following steps, is calculated and compared with a threshold 
to find important features.

Step 1 Calculating the variation between groups (Eqs. 6 and 7):

where ni , xi , and x are the number of samples and mean of samples in ith group, and mean of all samples, respec-
tively. Also, df B = K − 1 is the degree of freedom.

Step 2 Calculating the variation within groups (Eqs. 8 and 9):

σ is the standard deviation, and df w = (N − K) where N and K  a are the number of total samples and groups, 
respectively.

(2)y =
x − µ

σ

(3)y =
1

Max −Min
(x −Min)

(4)t =
(x1 − x2)− (µ1 − µ2)

√

S21
n1

+ S22
n2

(5)t =
(x1 − x2)
√

S21
n1

+ S22
n2

(6)Between sum of squares (BSS) =
C
∑

i=1

ni(xi − x)2

(7)Between mean squares (BMS) =
BSS

dfB

(8)Within sum of squares (WSS) =
C
∑

i=1

(ni − 1)σ 2

i

(9)Within mean squares (WMS) =
WSS

dfw
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Step 3 Calculating F-test statistic (Eq. 10):

The F-statistic demonstrates features of discriminative capabilities and its higher values mean that the vari-
ation among means of groups is less likely to happen by chance.

Particle swarm optimization (PSO).  Many algorithms utilize swarm intelligence to solve optimization 
problems, such as PSO, ant colony optimization (ACO), etc. PSO is a widely used algorithm for optimization 
among swarm intelligence-based algorithms60. It is well-known as an easy and flexible method from the imple-
mentation point of view. This algorithm uses a mathematical simulated model based on swarm behavior such as 
bird flocking in nature.

The PSO discovers the objective function space for finding optimum points by updating the position and 
tuning the velocity of individual agents, called particles. Updating of the particle position is implemented by 
Eq. (11). Adjusting of movement is defined by Eq. (12), composed of three components based on its own best 
location ( X∗

i  ), global best location ( g∗ ), and previous velocity ( vti  ). In Eqs. (11) and (12), Xt
i  and vti  are the posi-

tion and velocity of ith particle in t  time, respectively.

In Eq. (12), ǫ1 and ǫ2 are two random vectors, which the values of their elements are between 0 and 1. α and 
β are user-defined parameters, which can typically be α ≈ 2 and β ≈ 2 . θ is the value between 0 and 1, which 
in the simplest case is defined by θ ≈ 0.5 ∼ 0.9 . The pseudo-code of PSO is illustrated in Table 6 in more detail.

In the standard PSO, position and velocity are based on continuous values. However, many real-world opti-
mization problems search space are defined based on discrete values, such as binary problems. In this regard, 
Kennedy and Eberhart presented a new version of standard PSO for discrete optimization in 199762. They applied 
sigmoid and uniform transformations to the velocity vector and position vector, as shown in Eqs. (13) and (14).

where r is a random variable in the [0 1] range. The value of each velocity element vki  is defined as the probability 
of taking one value by xki  . The binary PSO (BPSO) significantly varies from the standard continuous PSO.

Classification.  Classifier models are powerful tools that apply well-known machine-learning algorithms for 
classification tasks. In this study, we used SVM, NB, KNN, RF, LR, and XgBoost as classic classifiers, and Deep 
self-organizing auto-encoder (SOAE)63 to assess the discrimination power of selected features.

The predictive performance of the classifier was evaluated using the following evaluation metrics (Eqs. 15–19), 
including accuracy, F1-score, Matthews correlation coefficient (MCC), sensitivity (Sn), and specificity (Sp). False 
negative (FN), false positive (FP), true negative (TN), and true positive (TP).

(10)F =
BMS

WMS

(11)Xt+1
i = Xt

i + vt+1
i

(12)vt+1
i = θvti + αǫ1

[

g∗ − Xt
i

]

+ βǫ2
[

X∗
i − Xt

i

]

(13)S
(

vki

)

=
1

1+ exp
(

−vki
) k = 1, 2, . . . , d

(14)xki =
{

1 if r < S
(

vki
)

0 otherwise

Table 6.   Pseudo code of particle swarm optimization61.

Particle Swarm Optimization Algorithm
Objective function ( ), = ( 1, 2,…, )

Initialize locations  and velocity  of n particles
Find ∗ from min ( ( 1), ( 2), …, ( )) at t=0
While (criterion):

For loop over all n particles and all d dimensions:
             Generate new velocity +1 using Eq. 10.
             Calculate new locations +1 = + +1

             Evaluate objective functions at new locations +1

             Find the current best for each particle ∗

Endfor
Find the current global best ∗

Update = +  1 (pseudo time or iteration counter)
Endwhile
Output the final results ∗
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Association rule mining.  Association rule mining is a potent data mining tool that presents the hidden 
association in the form of rules by discovering associated frequently co-occurring items in the dataset. Market 
basket analysis64–66 and bioinformatics67 are two main areas that apply association rule mining for the extraction 
of significant associations in marketing and genomic data, respectively. The interpretation of gene expression 
data (mRNA/miRNA), annotations, detection of protein interaction, and biomolecular localization prediction 
are some applications of association rule mining in bioinformatics67.

Association rule mining has two main steps, frequent itemset mining (FIM) and association rule generation. 
FIM extracts frequently co-occur sets of items (i.e., frequent itemsets). If itemset support is more than the mini-
mum support threshold, itemset is called a frequent itemset. Next, the association rule generation step creates 
the rules from the discovered frequent itemsets (FIs). If the support/confidence/lift of the rule is no less than the 
minimum support/confidence/lift threshold, the generated rule is called the association rule. These thresholds 
are user-defined parameters.

Association rule mining is an NP-hard problem, in which finding the results is challenging in a reasonable 
time. Introducing the Apriori algorithm addressed the computational problem in most regular-sized data68. Since 
then, many types of research have been done to develop new algorithms such as FP-Growth69 and Eclat70. These 
algorithms improved the scalability of the Apriori algorithm. However, the computational cost of association 
rule mining in the FIM stage for high-dimension data and big data is a challenging subject.

There are some principal terms in association rule mining, which are mentioned in the above section. In the 
following, we describe and formalize these basic concepts of frequent itemset and association rules. The related 
theories are available in71 with more details. Let I = {i1, i2, . . . , id , y} is a set of items,  D = {d1, d2, . . . , dn} is a 
dataset of n instances, F = {f1, f2, . . . , fm} is the features space with m features, and Y = {0, 1} is the user-defined 
phenotype. The di can be presented as a tuple (Xi , yi) , where Xi ∈ f1 × f2 × · · · × fm and yi ∈ Y .

Definition 1.  (Length of an itemset)
Let X be an itemset, which has K-distinct items, the length of the X is defined as |X| = K.

Definition 2.  (Support count and support of an itemset)
The total number of samples including X itemset is defined support count of an itemset X . Also, support of 

an item set X is the ratio of support count to the total number of samples.

Definition 3.  (Frequent itemset)
An itemset X is called a frequent itemset if and only if its support is no less than the minimum support, which 

is the user-defined threshold.

Definition 4.  (Association rule)
An association rule is defined as a form of A → C , where A and C are itemsets and A ∪ C = ϕ , A ⊂ X,C ⊂ X . 

In the A → C , A and C are called the Antecedent and Consequent, respectively. Also, A → C displays the asso-
ciation that if all items in Antecedent occur, then all items in Consequent co-occur. The generated association 
rules are filtered out based on the user-defined threshold, such as support, confidence, and lift.

Definition 5.  (Support of rule)
The support of rule A → C is the percentage of samples in D (as shown in Eq. 20). This measure presents 

the usefulness of the rule.

(15)Accuracy =
TP + TN

TP + TN + FP + FN
× 100

(16)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(17)F1 =
TP

TP + 1
2 (FP + FN)

(18)sensitivity =
TP

TP + FN
× 100

(19)specificity =
TN

TN + FP
× 100

(20)Support(A → C) =
support(A ∪ C)

n
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Definition 6.  (Confidence of rule)
The confidence of rule A → C is the percentage value that displays how frequently C occurs among all the 

examples containing A (as shown in Eq. 21). This measure shows the certitude of the rule.

Definition 7.  (Lift of rule)
The Lift of rule A → C defines that the occurrence of itemsets A is dependent to the C . When the Lift value 

is less (more) than 1, the occurrence of A is negatively (positively) associated with the occurrence of C . A and C 
are independent when the Lift value is equal to 1. The Lift value is shown in Eq. (22).

Here the FP-Growth approach was applied for association rule mining. Also, the pseudo-codes of the two 
stages are available in Tables 7 and 8.

(21)Confidence(A → C) = P(C|A) =
support(A ∪ C)

support(A)

(22)Lift(A → C) =
P(A ∪ C)

P(A)P(C)

Table 7.   Pseudocode of frequent itemset generation step in FP-Growth algorithm69.
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