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Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential

roles in the suppression of adaptive immune responses. As an immune checkpoint

molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks

initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can

eliminate the suppressive signals and release the antitumor immune responses.

Identification of the underlying mechanisms of modulation of the activity of the

PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options

and better assignment of patients for each option. Recent studies have confirmed

the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In
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Cancer; HCC, Hepatocellular Carcinoma; EAC, Esophageal Adenocarcinoma; GC, Gastric Cancer; PC,
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the current review,we give a summary of interactions between these transcripts

and PD-L1 in the context of cancer. We also overview the consequences of

these interactions in the determination of the response of patients to anti-

cancer drugs.
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Introduction

Programmed death-ligand 1 (PD-L1), alternatively named as

CD274 or B7-H1 is a transmembrane protein with essential roles

in the suppression of adaptive immune responses. The reaction

of the adaptive immune system to external or internal danger

signals leads to the expansion of antigen-specific CD8+ and/or

CD4+ T cell clones (1). However, when PD-L1 binds to the PD-1

checkpoint, an inhibitory signal is transmitted which decreases

the proliferation of antigen-specific T-cells in lymph nodes and

at the same time reduces apoptosis of regulatory T cells. PD-1/

PD-L1 axis mainly acts at the late stage of induction of T-cell

immune responses in peripheral tissues (2).

Immune checkpoint pathways are exploited by cancer cells so

as to evade the anti-tumor attacks initiated by the immune system

(3). Thus, the blockade of immune checkpoints can eliminate the

suppressive signals and release the antitumor immune responses.

PD-1 and PD-L1 have been used as key drug targets for the

development of immune checkpoint blockade treatment

modalities (2). Several PD-1/PD-L1 targeted therapies have been

approved for the treatment of several types of malignancies (2). At

least three human IgG1 antibodies anti-PD-L1 antibodies have been

approved for clinical application (4). While atezolizumab and

durvalumab have been designed to eliminate FcgR-binding and

effector function, avelumab retains the intact function of Fc (5).

BMS-936559 is another PD-L1-targeting antibody that is distinctive

from the mentioned approved PD-L1 antibodies since it is an IgG4

mAb with S228P mutation (5). In addition, the fusion protein

KN035 contains a distinct domain of the humanized anti-PD-L1

antibody and the Fc of an IgG1 (6). Meanwhile, PD-L1-targeting

agents can be prescribed in the form of a prodrug. An example is

the agent CX-072 which can be activated by a protease (7). Due to

incomplete success and drawbacks of using PD-L-targeting drugs,

assessment of expression of PD-L1 is regarded as a marker for

prediction of response and identification of patients who gain a

favorable clinical response from this type of therapy (4).

The expression of genes can be regulated at the transcriptional

and posttranscriptional levels by functional RNA molecules known

as non-coding RNAs (8, 9). The expression of ncRNAs, which

primarily regulate oncogenes and tumor suppressor genes, is altered

in several kinds of humanmalignancies (10, 11). Recent studies have
02
confirmed the interplay between a variety of non-coding RNAs and

the PD1/PD-L1 axis. In fact, several microRNAs (miRNAs), long

non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have

been shown to modulate the activity of this axis. Identification of

molecular mechanisms that modulate the activity of the PD1/PD-L1

axis would facilitate the design of more efficacious therapeutic

options and better assignment of patients for each option. In the

current review, we give a snapshot of interactions between these

transcripts and PD-L1 in the context of cancer.We also overview the

consequences of these interactions in the determination of the

response of patients to anti-cancer drugs.
Gastrointestinal cancers

In colorectal cancer (CRC) samples, over-expression of

SETDB1 expression has been associated with the expression of

PD-L1. Mechanistically, SETDB1 can down-regulate miR-22 levels

by decreasing the expression of FOSB. On the other hand, miR-22

down-regulates PD-L1 levels by targeting BATF3. SETDB1

knockdown has enhanced the cytotoxic effects of T cells on

tumor cells by influencing the FOSB/miR-22/BATF3/PD-L1 axis,

thus hindering the growth of CRC tumors in mice. Cumulatively,

the effects of SETDB1 on the activity BATF3/PD-L1 axis leads to

immune evasion of CRC tumors (12). miR-124 is another miRNA

with a possible regulatory role on PD-L1. Expression of miR-124 is

significantly decreased in CRC, and its under-expression has been

correlated with the up-regulation of PD-L1 (13). The luciferase

assay has validated PD-L1 targeting by miR-124 (13). miR-124

mimics could significantly reduce the expression of PD-L1 at the

transcript, protein, and cell surface levels (13). Moreover, this

miRNA could inhibit Tregs in co-culture models by influencing

levels of IL-10, IL-2, TNF-a, TGF-b, and IFN-g. Up-regulation of

miR-124 could also decrease the proliferation of CRC cells and

induce cell cycle arrest at G1 via down-regulating c-Myc. Moreover,

this miRNA could induce intrinsic and extrinsic apoptotic

pathways, down-regulate CD44 and MMP-9 expression levels,

and suppress cell migration and invasion (13). STAT3 signaling

has also been suppressed by miR-124 (13). miR‐93‐5p (14) and

miR-140-3p (15) are two other miRNAs that can target PD-L1 in

CRC cells. Meanwhile, a number of lncRNAs and circRNAs have
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been found to affect CRC progression by influencing the expression

of miRNAs and enhancing the expression of PD-L1. For instance,

MIR17HG lncRNA promotes the progression of CRC by

influencing the expression of miR-17-5p (16). Besides,

KCNQ1OT1 lncRNA released by CRC cells-originated exosomes

can mediate immunity through the regulation of PD-L1

ubiquitination via miR-30a-5p/USP22 (17). Hsa_circ_0136666 is

also involved in Treg-mediated immune escape through

modulation of miR-497/PD-L1 axis (Figure 1A) (18). Cancer-

associated fibroblasts have been shown to secrete circEIF3K in

their exosomes to enhance progression of CRC through miR-214/

PD-L1 axis (19).

In hepatocellular carcinoma (HCC), suppression of PARP has

enhanced the efficacy of immune checkpoint therapy via

influencing the miR-513/PD-L1 axis. Thus, combined

administration of the PARP inhibitor olaparib and anti-PD1 has

been suggested as a treatment modality in HCC (20). In this type of

cancer, HOXA-AS3 lncRNA has been found to promote

proliferation and migratory potential through miR-455-5p/PD-L1

axis (21). Another study in HCC has shown a correlation between

expressions of PD-L1 and PD-L2. Moreover, this study has

demonstrated the up-regulation of PCED1B-AS1. Expression of

PCED1B-AS1 has been positively correlated with expression levels

of PD-L1 and PDL-2 while being negatively correlated with hsa-

miR-194-5p. Mechanistically, PCED1B-AS1 increases expressions

of PD-L1 and PD-L2 through sequestering hsa-miR-194-5p, thus

inducing PD-L1/2-mediated immunosuppressive effects on T cells
Frontiers in Immunology 03
(22). Table 1 shows the interactions between non-coding RNAs and

PD-L1 in gastrointestinal cancers.
Lung cancer

In lung cancer samples, expression of PD-L1 expression has

been correlated with the T stage. Treatment with PD-L1 inhibitor

has decreased the expression of PD-L1 and diminished T stage in

patients suffering from PD-L1-positive lung cancer. In this group of

patients, over-expression of PD-L1 or decreased serum exosomal

level of miR-16-5p level has been correlated with longer survival

upon treatment with a PD-L1 inhibitor. Moreover, this kind of

treatment reduced the quantity of exosomes in the sera of PD-L1-

positive patients and enhanced serum exosomal levels of miR-16-

5p. High exosomal levels of miR-16-5p could depress cell

proliferation and migration in cell cultures, and induce apoptosis,

particularly in cells treated with a PD-L1 inhibitor. Cumulatively,

the miR-16-5p content of serum exosomes possibly inhibits tumor

growth and can be used as a marker for PD-L1 inhibitor therapy

(41). miR‐155‐5p (42) and miR-326 (43) are two other miRNAs

that suppress PD‐L1 expression and attenuate immune escape in

lung cancer by targeting PD-L1. In addition, miR-138-5p has been

found to affect the activity of the PD-1/PD-L1 axis, inhibit tumor

growth and activate the immune system in this type of cancer (44).

A number of oncogenic lncRNAs and circRNAs, namely OIP5-

AS1, MALAT1, Circ_0000284, Circ-CPA4 and Circ-CHST15 have
A B

FIGURE 1

A graphical representation of the ways in which programmed death ligand 1 (PD-L1) and non-coding RNAs interact with one another in
gastrointestinal and gynecological cancers.
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TABLE 1 Interactions between non-coding RNAs and PD-L1 in gastrointestinal cancers.

Cancer miRNA/
lncRNA

Sample Cell Line PD-
L1Expression

Target Function Ref

CRC miR-22
(-)

36 pairs of CRC and
paratumoral tissues,
BALB/c nude mice

CRL-1831, SW480,
FHC,
CCL-228, LS174T,
CL-188,

Up BATF3,
FOSB

Histone Methyl-transferase SETDB1 via BATF3/
PD-L1 axis by decreasing miR-22 could enhance
immune evasion.

(12)

CRC miR‐124‐3p
(Down-regulated)

20 pairs of CRC and
paratumoral tissues

HCT‐116, HT29,
SW480, 293T,
PBMCs

Negative
correlation with
miR‐124‐3p

MMP‐9,
c-Myc,
Bcl-2,
Bax,
Caspase-
3/8/9,
STAT3

miR‐124‐3p via targeting STAT3 can decrease PD‐
L1 expression and block tumorigenesis in CRC
cells.

(13)

CRC miR‐93‐5p
(Down-regulated)

125 pairs of CRC and
paratumoral tissues

HCT116, SW480,
PBMCs

Up MMP1/2/
9,
IL‐2/1b/
10,
IFN‐g,
TGF‐b

miR‐93‐5p via targeting PD-L1 could modulate the
progression of CRC.

(14)

CRC miR-140-3p
(Down-regulated)

31 pairs of CRC and
paratumoral tissues,
BALB/c-nude mice

HCT116, SW480,
NCM460

Up PD-L1,
PI3K,
AKT

miR-140-3p via targeting PD-L1 could induce
apoptosis and decrease cell growth in CRC.

(15)

CRC MIR17HG (Up-
regulated), miR-
17-5p

Cohort study, RELA
mice, nude mice

HCT15, HCT116,
SW480, SW620,
HT29, DLD-1,
RKO, LoVo

PD-L1/2,
PD-L1 had
positive
correlation with
MIR17HG

BLNK,
TIM3,
CTLA-4,
NF-kB

miR-17-5p is transcribed from MIR17HG and
reduces expression of the tumor suppressor B-cell
linker. MIR17HG can also upregulate the
expression of PD-L1.

(16)

CRC KCNQ1OT1 (Up-
regulated), miR-
30a-5p

20 pairs of CRC and
paratumoral tissues,
BALB/c nude mice

FHC, 293T, SW480,
PBMCs SW1463,
HT-29, CT26

– USP22,
ALIX,
Vimentin,
E/N-
cadherin,
Bax, Bcl-
2

LncRNA KCNQ1OT1 via miR-30a-5p/USP22 axis
by regulating PD-L1 could promote CRC immune
escape.

(17)

CRC Hsa_circ_0136666
(Up-regulated),
miR-497

nude mice HCT116, SW480,
SW620, HT29,
HCT8, FHC

Up IL-2/10/
1b,
TNF-a,
TGF-b,
AKT,
mTOR,
ERK1/2,
PTEN

Hsa_circ_0136666 via targeting miR-497/PD-L1
axis could enhance Treg-mediated immune escape
of CRC.

(18)

CRC Circ-EIF3K (-),
miR-214

TCGA database, NOD-
SCID mice

HCT116, SW620,
FHC, 293T,
HDLEC

Up – Exosomal circ-EIF3K from cancer-associated
fibroblast via modulating the miR-214/PD-L1 axis
could enhance CRC progression.

(19)

CRC Circ-CDR1-AS
(-),
miR-7

BALB/c nude mice 293T, SW620,
Caco2, HUVECs

Positive
correlation with
Circ-CDR1-AS

CMTM4/
6

Overexpression of circ-CDR1-AS via enhancing cell
surface PD-L1 levels could increase the immune
escape of CRC cells.

(23)

HCC miR-513
(-)

C57BL/6 mice Hep-3b,
YY-8103

– PARP2 Habitation of PARP via miR-513/PD-L1 axis in
HCC could potentiate immune checkpoint therapy.

(20)

HCC HOXA-AS3 (Up-
regulated),
miR-455-5p

TCGA database Hep3B, SNU-387,
Li-7, HuH-7, L-02,
293T

Up – Overexpression of lncRNA HOXA-AS3 10 by
targeting the miR-455-5p/PD-L1 axis could
contribute to cell invasion.

(21)

HCC PCED1B-AS1
(Up-regulated),
hsa-miR-194-5p
(Down-regulated)

45 pairs of HCC and
paratumoral, nude
mice

Huh-7, HepG2,
293T

PD-L1/2, Positive
correlation with
PCED1B-AS1

LRP6,
AKT,
STAT3,
NoTCH-
1

LncRNA PCED1B-AS1 via sponging miR-19 by
promoting PD-L1 and PD-L2 function could
induce immunosuppression in HCC.

(22)

HCC miR-195
(-)

30 pairs of HCC and
paratumoral tissues,

Hepa1-6, Huh-7,
Hep3B, HepG2

– CHK1,
IRF-1,

IRF-1 via targeting miR-195 by modulating PD-L1
could increase apoptosis of HCC cells.

(24)

(Continued)
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TABLE 1 Continued

Cancer miRNA/
lncRNA

Sample Cell Line PD-
L1Expression

Target Function Ref

wild-type C57BL/6
mice

PARP,
STAT3

HCC miR-675-5p
(-)

152 HCC tissue
samples, BALB/C nude
mice

SMMC-7721,
HepG2. PBMCs

– HK2,
HLA-
ABC,
EGFR,
MAPK

EGFR-P38 MAPK axis via miR-675-5p and HK2
by decreasing HLA-ABC could enhance PD-L1 in
HCC cells.

(25)

HCC LINC00657 (Up-
regulated), miR-
424

60 pairs of HCC and
paratumoral tissues

HepG2, Huh7,
SMMC-7721,
HCCLM3, L02

Up Knockdown of lncRNA LINC00657 via targeting
miR-424 by regulating PD-L1 could attenuate HCC
cell progression.

(26)

HCC hsa_circ_0003288
(Up-regulated),
miR-145

40 pairs of HCC and
paratumoral tissues,
BALB/c nude mice

HepG2, Huh7,
SMMC-7721,
Bel-7402, L02

Up E/N-
cadherin,
AKT

hsa_circ_0003288 could induce EMT through
modulating the miR-145/PD-L1 axis in HCC cells.

(27)

EAC miR-145-5p
(Up-regulated)

30 pairs of EAC and
paratumoral tissues,
BALB/c mice

OE33, FLO-1,
HET-1A, PBLs

– SPOP,
c-Myb,
IFN-g,
IL-2/4/10,
MMP-3/
9,
E/N-
cadherin

c-Myb via targeting miR-145-5p/SPOP/PD-L1 axis
could facilitate immune escape.

(28)

GC miR-1290
(-)

81 pairs of GC and
paratumoral tissues,
C3H mice

GEC-1, MGC-803,
BGC-823, MFC,
293T

– Grhl2,
ZEB1,
TSG101,
IL-2,
IFN-g

Tumor-derived extracellular vesicles containing
miR-1290 via Grhl2/ZEB1/PD-L1 axis could
promote the immune escape of cancer cells.

(29)

GC miR-16-5p
(-)

68 pairs of GC and
paratumoral tissues,
BALB/c mice, NOD/
SCID mice

AGS, NCI-N87,
293T, PBMCs

– iNOS,
HSP70,
IL-2,
TNF-a,
INF-g

miR-16-5p via activation of T cell immune
response by regulation PD-L1 could inhibit GC
progression.

(30)

GC miR-105-5p
(-)

368 GC tissue samples AGS, NCI–N87,
SNU-719, SNU-
216, MKN-74,
293T, PBMCs

– F522,
IFN-g,
IL-2

DNA methylation via controlling miR-105-5p
could decrease PD-L1 expression and increase
immunogenicity in GC cells.

(31)

GC miR-15a/16
(Down-regulated)

6 pairs of GC and
paratumoral tissues,
BALB/c mice

SGC7901, 293T Up TSG101,
ALIX

miR-15a/16 via modulating PD-L1 could decrease
the immune escape of GC cells.

(32)

GC miR-502-5p
(Down-regulated)

25 pairs of GC and
paratumoral tissues,
nude mice

SGC-7901,
BGC823, MGC803,
GES-1,

Up STAT3 miR-502-5p by modulating PD-L1 could enhance
GC progression and invasion.

(33)

GC PROX1-AS1 (Up-
regulated),
miR-877-5p

30 pairs of GC and
paratumoral tissues

AGS, MGC-803,
SGC-7901,
SNU-1, GES-1

Negative
correlation with
miR-877-5p

Cyclin-
D1,
p21, Bax,
Bcl-2,
Caspase-
3/9,
Cox-2,
MMP-2/9

LncRNA PROX1-AS1 via targeting miR-877-5p/
PD-L1 axis could accelerate GC progression and
invasion.

(34)

GC HIF1A-AS2 (Up-
regulated),
miR-429

50 pairs of GC and
paratumoral tissues,
BALB/c nude mice

SNU-5, HGC-27,
MKN45, AGS

Up – LncRNA HIF1A-AS2 via targeting miR-429/PD-L1
axis could enhance metastasis of GC cells.

(35)

GC SNHG15 (Up-
regulated),
miR-141

9 pairs of GC and
paratumoral tissues

GES-1, HGC-27,
PBMCs

– – LncRNA SNHG15 via targeting the miR-141/PD-
L1 axis could contribute to the immuno-escape of
GC cells.

(36)

PC miR-194-5p
(-)

C57BL/6 mice 293T, Panc02,
Panc1

Up N-
cadherin,
Vimentin,

miR-194-5p via targeting PD-L1 could regulate the
immune escape of PC cells.

(37)

(Continued)
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been shown to act as molecular sponges for PD-L1-targeting

miRNAs, thus incresing levels of PD-L1 (Figure 2A) (Table 2).
Gynecological cancers

The impact of non-coding RNAs on the expression of PD-L1

has been assessed in ovarian cancer (OC), cervical cancer (CC), and

endometrial cancer (EC). In OC, miR-92 has been reported to block
Frontiers in Immunology 06
the functions of immune cells by modulating the expression of PD-

L1 via the LATS2/YAP1 axis (51). Moreover, the sponging effect of

EMX2OS on miR-654-3p has been shown to result in the induction

of cell proliferation, invasive properties, and sphere formation in

OC through regulation of the AKT3/PD-L1 axis (52). In addition,

the Lnc-OC1/miR-34a axis has a crucial role in the pathogenesis of

EC through the modulation of PD-L1 (53). Conversely, another

study has shown that PD-L1 has a tumor suppressor role in

aggressive EC and its expression is influenced by MEG3/miR-
TABLE 1 Continued

Cancer miRNA/
lncRNA

Sample Cell Line PD-
L1Expression

Target Function Ref

IFN-g,
GZMB

PC miR-142-5p
(-)

C57BL/6 mice Panc02, 293T,
PBMCs

PD-1/PD-L1
(-)

TNF-a,
IFN-g,
IL-10

miR-142-5p by blocking the PD-L1/PD-1 axis
could enhance anti-tumor immune responses.

(38)

PC PSMB8-AS1 (Up-
regulated), miR-
382-3p

90 pairs of PC and
paratumoral tissues,
BALB/c nude mice

PANC-1, CFPAC,
MIA-paca2, AsPC-
1, Capan-2,
BXPC-3

Up (in the
PSMB8-AS1
overexpressed PC
cells)

Cyclin-
D1,
CDK4/6,
E-
cadherin,
Vimentin,
STAT1

LncRNA PSMB8-AS1 via modulating the miR-382-
3p/STAT1/PD-L1 axis could contribute to the PC
cells’ progression.

(39)

PC LINC00473 (Up-
regulated), miR-
195‐5p

134 PC tissues, 20
normal samples

SW‐1990, 293T,
Panc‐1, BxPC‐3,
AsPC‐1, CAPAN‐2,
H6C7, PBMCs,

Up Bcl‐2,
Bax,
IFN‐g,
IL‐4,
MMP-2/9

LncRNA LINC00473 via modulating PD-L1 by
sponging miR‐195‐5p could drive the progression
of PC cells.

(40)
frontiersin
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FIGURE 2

An illustration in graphical form of the methods via which the proteins are known as programmed death ligand 1 (PD-L1) and non-coding RNAs
such as miRNAs, lnc-RNAs, and circ-RNAs interact with one another in lung and breast cancer.
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216a axis (Figure 1B) (54). Table 3 shows the interactions between

non-coding RNAs and PD-L1 in gynecological cancers.
Breast cancer

At least four studies have assessed interactions between non-

coding RNAs and PD-L1 in the context of breast cancer (BCa)

(Table 4). Two down-regulated miRNAs in BCa, namely miR-

383-5p (55) and miR-424-5p (56) have been reported to affect
Frontiers in Immunology 07
the expression of PD-L1 (Figure 2B). Moreover, exosomes

secreted by BCa-associated fibroblasts have been shown to

assist in the suppression of immune cell function through the

transfer of PD-L1 inhibiting miRNA miR-92 (57). Finally,

expression of GATA3-AS1 has been found to be markedly

increased in triple-negative BCa tissues and cells parallel with

a reduction in the proportion of CD8+ T cells. GATA3-AS1

silencing has suppressed the growth of tumor cells and decreased

the half-life of the PD-L1 protein. GATA3-AS1 has been shown

to induce PD-L1 deubiquitination via miR-676-3p/COPS5 axis.
TABLE 2 Interaction between non-coding RNAs and PD-L1 in lung cancer.

miRNA/
lncRNA

Sample Cell Line PD-L1
Expression

Target Function Ref

miR-16-5p
(-)

60 LUAD patients and 20
healthy controls, BALB/C
nude mice

BEAS-2B, A549, PC9, HCC827 – Calnexin,
TSG101

Serum exosomal miR-16-5p by regulating PD-L1
could inhibit lung cancer progression.

(41)

miR-155-5p
(Up)

9 pairs of LUAD and
paratumoral tissues

A549, H1650 – – miR-155-5p via suppressing PD-L1 expression
could modulate the immune response in LUAD.

(42)

miR-326
(Down-
regulated)

50 LUAD tissue samples,
BALB/c mice

A549, H1975, H1734, Calu-3,
BEAS-2B, 293T, PBMCs

Negative
correlation
with miR-326

B7-H3,
ICOSLG,
TGF-b,
IL-2/10/1b,
IFN-g,
TNF-a,

miR-326 by modulating PD-L1 and B7-H3 could
attenuate immune escape and prevent metastasis in
LUAD cells.

(43)

miR-138-5p
(-)

5 NSCLC tumor tissue
samples, C57BL/6 mice,
nude mice

A549, 3LL,
293T

PD-L1/PD-1
(-)

Cyclin-D3,
MCM2

miR-138-5p by targeting PD-1/PD-L1 could inhibit
tumor growth and activate the immune system.

(44)

miR-142-5p
(Up-
regulated)

20 NSCLC tissue samples
and 20 normal tissue
samples, serum samples

A549, 293T,
PBMCs

Down IFN-g,
Caspase-3/
9,
CCL-17/22,
PTEN,
PI3K, AKT

miR-142-5p via modulating the PTEN pathway by
targeting PD-L1 expression could regulate CD4+ T
cells in human NSCLC.

(45)

OIP5-AS1
(Up-
regulated),
miR-34a

68 NSCLC patients H522, H22,
H23

– – LncRNA OIP5-AS1 via binding to miR-34a could
upregulate oncogenic PD-L1 in NSCLC.

(46)

MALAT1 (-),
miR-200a-3p

113 NSCLC tissue samples A549, CAL-12T Positive
correlation
with MALAT1

– LncRNA MALAT1 via modulating miR-200a-3p/
PD-L1 axis could contribute to NSCLC
progression.

(47)

Circ_0000284
(Up-
regulated),
miR-377-3p

60 pairs of NSCLC and
paratumoral tissues, BALB/
c nude mice

MRC-5, A549, H82 – E-cadherin,
Fibronectin,
MMP9,
HIPK3

Circ_0000284 via targeting miR-377-3p-mediated
PD-L1 surge plays an oncogenic role in NSCLC.

(48)

Circ-CPA4
(Up-
regulated),
miR-let-7

50 pairs of NSCLC and
paratumoral tissues, nude
mice

A549, H1299,
SK-MES-1, Calu-3, HBE,
PBMCs

Up Oct-4,
SOX2,
Nanog,
N-cadherin,
Vimentin,
Bax,
IL-4/10,
IFN-g

Circ-CPA4 via targeting the miR-let-7/PD-L1 axis
could regulate immune evasion.

(49)

Circ-CHST15
(Up-
regulated),
miR-155-5p,
miR-194-5p

90 pairs of LC and
paratumoral tissues, BALB/
c mice

16HBE, H1299, H23, H1359,
H1435, A549, H358, PC-9,
BNCC341852, CMT-167

Positive
correlation
with Circ-
CHST15

PCNA,
CCL17/22,
IFN-g, IL-
10

Circ-CHST15 via sponging miR-155-5p and miR-
194-5p could enhance the invasion and migration
of LC cells mediated by PD-L1.

(50)
frontiersin
.org

https://doi.org/10.3389/fimmu.2022.982902
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghafouri-Fard et al. 10.3389/fimmu.2022.982902
Thus, this lncRNA contributes to the progression of triple-

negative BCa and immune evasion via enhancing the stability

of PD-L1 protein and inducing GATA3 degradation (58).

Renal cancer

miR-497-5p is a putative tumor suppressor miRNA in renal

cancer whose down-regulation leads to the over-expression of PD-

L1 in this type of cancer (59). Moreover, urinary extracellular
Frontiers in Immunology 08
vesicles (EVs) have been found to contain miR-224-5p.

Expression of miR-224-5p has been higher in urinary EVs of

patients with renal cell carcinoma compared to healthy controls.

Over-expressed miR-224-5p could inhibit proliferation and

induce cell cycle arrest by targeting CCND1. Besides, miR-224-

5p has a role in the induction of invasive andmetastatic properties

of renal carcinoma cells. Remarkably, miR-224-5p has a role in the

enhancement of PD-L1 stability through the suppression of

CCND1 (60). Finally, SNHG1 has been found to regulate
TABLE 3 Interaction between non-coding RNAs and PD-L1 in gynecological cancers.

Cancer miRNA/
lncRNA

Sample Cell Line PD-L1
Expression

Target Function Ref

OC miR-92
(Up-
regulated)

40 OC tissue samples SKOV3 – LATS2,
YAP1

miR-92 via LATS2/YAP1/PD-L1 signaling
overexpression could suppress immune cell
function in OC cells.

(51)

OC EMX2OS
(Up-
regulated),
miR-654-
3p

50 pairs of OC and
paratumoral tissues, BALB/
c nude mice

SKOV-3, ES-2,
OVCAR3, A2780,
CAOV3, IOSE-80

Up SOX2, AKT3,
Oct-4, Nanog,
Caspase-3

LncRNA EMX2OS through modulating miR-
654-3p/AKT3/PD-L1 axis could induce
metastasis of OC cells.

(52)

EC Lnc-OC1
(Up-
regulated),
miR-34a

28 pairs of EC and
paratumoral tissues

HESCs, Ishikawa – – Lnc-OC1 by targeting miR-34a and suppressing
PD-L1 could induce cell apoptosis in EC.

(53)

EC MEG3
(Down-
regulated),
miR-216a

65 EC tissue samples and
18 normal endometrium
samples

HEC-50, HeLa,
HOUA-I, HEC-1, EM,
SPAC-1-L

Down Caspase-3/7,
MCL-1, ZO-1,
E-cadherin,
EMT,
Vimentin,
Snail

LncRNA MEG3 via repressing miR-216a and by
increasing PD-L1 expression could inhibit cell
invasion.

(54)
frontiersin
TABLE 4 Interaction between non-coding RNAs and PD-L1 in breast cancer.

miRNA/
lncRNA

Sample Cell Line PD-L1
Expression

Target Function Ref

miR-383-
5p
(Down-
regulated)

24 pairs of BCa and
paratumoral tissues

MDA-MB-
231, PBMCs,
MDA-MB-
468, MCF-7,
SK-BR-3

Up Caspase-3/9, Bcl-2, Bax, MMP-2/3/9,
Vimentin, IL-2, IL-10, INF-g, TNF-a/
b, AKT, PI3K, mTOR

miR-383-5p via inhibition of PD-L1 can
induce apoptosis and decrease metastasis of
BCa cells.

(55)

miR-424-
5p
(Down-
regulated)

35 pairs of BCa and
paratumoral tissues

MDA-MB-
231, PBMCs,
MDA-MB-
468, SKBR-3,
MCF-7

Up VEGF, c-Myc,
Caspase-3, Bcl-2, Bax, p53, p27,
Beclin-1,
IL-2/10, INF-g,
PTEN, PI3K, AKT

miR-424-5p via targeting PD-L1 could
decrease the progression of BCa cells.

(56)

miR-92
(Up-
regulated)

34 BCa tissues and
34 normal tissues,
BALB/c mice

MA-782,
MCF7,
NK-92

Up (in cancer cells
treated with CAF-
derived exosomes)

Vimentin, A-SMA, ALIX, YAP1,
LATS2

CAFs via targeting the miR-92/PD-L1 axis
could suppress immune cell function in BCa
cells.

(57)

GATA3-
AS1
(Up-
regulated),
miR-676-
5p

68 pairs of TNBC
and paratumoral
tissues

MDA-MB-
468,
MDA-MB-
436,
MDA-MB-
231,
HCC1937,
MCF-10A

– CSN5, COPS5,
CBP, GATA3

GATA3-AS1 via stabilizing PD-L1 and
degrading GATA3 contributes to TNBC
progression and immune evasion.

(58)
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immune escape in this type of cancer through targeting miR‐129‐

3p and subsequently activating STAT3 and PD‐L1 (61). Table 5

shows the interaction between non-coding RNAs and PD-L1 in

renal cancer.

Other cancers

The interaction between non-coding RNAs and PD-L1 has also

been investigated in laryngeal cancer, anaplastic thyroid carcinoma,

osteosarcoma, and diffuse large B-cell lymphoma (DLBCL)
Frontiers in Immunology 09
(Table 6). In laryngeal cancer, miR-217 by repressing the AEG-1/

PD-L1 axis could inhibit metastasis (62). In thyroid carcinoma,

UCA1 has been found to affect the miR-148a/PD L1 axis to

attenuate the cytotoxic effects of CD8+T cells (63). In

osteosarcoma, miR-200a through promoting PTEN-mediated PD-

L1 up-regulation could increase immunosuppression (64).

Moreover, LINC00657 via targeting miR‐106a could promote

metastasis through the activation of PD‐L1 (65). Finally, MALAT1

by sponging miR-195 could enhance tumorigenesis and immune

escape of DLBCL (67).
TABLE 5 Interaction between non-coding RNAs and PD-L1 in renal cancer.

miRNA/
lncRNA

Sample Cell Line PD-L1
Expression

Target Function Ref

miR-497-
5p
(Down-
regulated)

30 pairs of ccRCC and paratumoral
tissues, TCGA-KIRC databases

Caki-2,
ACHN

Up – miR-497-5p suppressing could enhance PD-L1
expression in ccRCC.

(59)

miR-1-3p,
miR-150-
5p, miR-
224-5p
(Up-
regulated)

35 pairs of RCC and paratumoral
tissues, 6 RCC urine samples, and 6
control urine samples

293T, 769-P,
786-O, Caki-
1,
OS-RC-2,
ACHN, 293T,
PBMCs

– Cyclin-D1,
GRP94, ALIX,
TSG101, SPOP

miR-224-5p containing in urinary extracellular vesicle
expression by suppressing Cyclin-D1 could regulate
PD-L1 in RCC cells.

(60)

SNHG1
(Up-
regulated),
miR‐129‐
3p

20 pairs of RCC and paratumoral
tissues, nude mice

ACHN,
A498,
786‐O, Caki‐
1, PBMCs

Down
(after SNHG1
knockdown)

IL-2, TNF-a,
IFN-g, STAT3

LncRNA SNHG1 via targeting miR‐129‐3p by
activation STAT3 and PD‐L1 could modulate the
immune escape of RCC cells.

(61)
frontiersin
TABLE 6 Interaction between non-coding RNAs and other cancers.

Cancer miRNA/
lncRNA

Sample Cell Line PD-L1
Expression

Other
Targets

Function Ref

Laryngeal
Cancer

miR-217
(Down-
regulated)

29 pairs of LC and
paratumoral tissues,
BALB/C nude mice

Hep2, HUVEC – AEG-1 miR-217 by repressing AEG-1/PD-L1 axis
expression could inhibit metastasis.

(62)

Anaplastic
Thyroid
Carcinoma

UCA1
(Up-
regulated),
miR-148a

10 pairs of ATC and
paratumoral tissues,
NOG mice

8505C, Hth74, 293T,
PBMCs

– IFN-g,
TNF-a

LncRNA UCA1 via targeting miR-148a/PD-
L1 axis could attenuate the killing effect of
cytotoxic CD8+T cells.

(63)

Osteosarcoma miR-200a
(-)

32 OS tissue samples,
Mice

143B, MG63, HOS,
U2OS, K7, K7M2,
DUNN, PBMCs

Positive
correlation with
high levels of miR-
20a

PD-L1,
PTEN

miR-200a could increase
immunosuppression.

(64)

LINC00657
(-), miR‐
106a

– MG63, U2OS,
HDLEC, 293T

Up – LINC00657 via targeting miR‐106a could
promote metastasis.

(65)

Diffuse large B-
cell lymphoma
(DLBCL)

miR-195
(Down-
regulated)

20 pairs of DLBCL and
paratumoral tissues

OCI-Ly-10, 293T,
PBMCs

Up IFN-g,
TNF-a,
IL-10

Overexpression of miR-195 by targeting
PD-L1 could attenuate the immune escape
of DLBCL.

(66)

MALAT1
(-),
miR-195

37 DLBCL patients OCI-Ly10,
PBMCs

Positive
correlation with
MALAT1

Slug,
E/N-
cadherin,
Vimentin,
ERk1/2

LncRNA MALAT1 by sponging miR-195
could enhance tumorigenesis and immune
escape of DLBCL.

(67)
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Interactions between non-coding
RNAs and PD-L1 in response to
chemotherapeutic agents

The interaction between non-coding RNAs and PD-L1 can

also affect the response of cancer cells to anti-cancer modalities.

Moreover, anti-cancer drugs can affect these interactions

(Table 7). Cisplatin is the mostly assessed drug in this regard.

Cisplatin via modulation of miR-181a expression could
Frontiers in Immunology 10
negatively regulate PD-L1 expression in NSCLC (68).

Meanwhile, miR-3127-5p via regulating STAT3 could up-

regulate PD-L1-associated chemoresistance in NSCLC cells

(69). Besides, miR-526b-3p through inhibiting STAT3-

promoted PD-L1 expression could decrease cisplatin resistance

and metastasis (70). miR 576 3p by affecting PD L1 and cyclin

D1 expression could enhance the cisplatin sensitivity of OC

cells (74).

Thalidomide has been shown to suppress angiogenic process

and immune evasion of NSCLC cells by influencing the
TABLE 7 Chemotherapeutic agents and PD-L1.

Type of
Diseases

Drug Non-
coding
RNAs

Sample Cell line PD-L1
Expression

Other
Targets

Function Ref

NSCLC Cisplatin miR-181a
(-)

C57BL6/J mice A549R, H69R (A549,
H69, LL/2); treated with
10 mg/ml cisplatin for
24 h

Up (in
CDDP-
resistant)

ATM,
c-FOS

Cisplatin via affecting miR-181a
expression could negatively
regulate PD-L1 expression in
NSCLC.

(68)

NSCLC Cisplatin miR-3127-5p
(-)

64 pairs of NSCLC and
paratumoral tissues

A549, NCI-H1299,
A549/DDP, 293T,
PBMCs

Up LC3,
P62,
STAT3

miR-3127-5p via regulating
STAT3 could up-regulate PD-
L1-associated chemoresistance in
NSCLC cells.

(69)

NSCLC Cisplatin miR-526b-3p
(-)

100 NSCLC patients,
BALB/c nude mice

BEAS-2B, H1975, A549,
PC-9

PD-L1, MDR1,
c-Myc,
STAT3

miR-526b-3p through
suppression of STAT3-promoted
PD-L1 could decrease cisplatin
resistance and metastasis.

(70)

NSCLC Thalidomide FGD5-AS1
(Up-
regulated),
miR-454-3p

45 pairs of NSCLC and
paratumoral tissues,
BALB/c nude mice;
treated with 200 mg/kg
Thalidomide twice a week
for 3 weeks

A549, SPC-A1, H1299,
PC-9, H226, 16HBE,
293T, HUVECs; treated
with 100 µM
thalidomide for 24 h

Up PD-1,
ZEB1,
VEGFA,
E/N-
cadherin

Thalidomide affects FGD5-AS1/
miR-454-3p/ZEB1 axis and
expressions of VEGFA and PD-
1/PD-L1.

(71)

NSCLC Nobiletin miR-197
(-)

– A549, H292, H460;
treated with 200 µM
Nobiletin for 48 h

PD-L1, p53,
MDM2,
STAT3,
EGFR,
JAK2

Nobiletin by regulating STAT3-
mediated PD-L1 expression and
via p53-independent PD-L1
downregulation could inhibit
tumor progression.

(72)

LUAD Cisplatin FGD5-AS1
(-),
miR-142-5p

46 LUAD tissue samples A549/DDP, HCC827/
DDP,
A549, HCC827

Up (in DDP-
resistant cells)

– FGD5-AS1 via targeting miR-
142-5p/PD-L1 axis could
enhance cisplatin resistance of
LUAD cells.

(73)

OC Cisplatin miR-576-3p
(down)

BALB/c nude mice;
treated with 10 mg/kg
cisplatin, IP, twice a week
for 3 weeks

SKOV3/DDP and
A2780/DD, 293T,
(SKOV3, A2780);
treated with 1, 2, 4, 8
µM cisplatin for 48

Up (in DDP-
resistant cells)

Cyclin-D1,
MDR1,
PARP,
Caspase-3

miR-576-3p by affecting PD-L1
and cyclin D1 expression could
enhance the cisplatin sensitivity
of OC cells.

(74)

OC Cisplatin miR-145
(Down-
regulated)

73 OC tissue samples A2780, PBMCs,
(A2780/DDP);
pretreated with 100 mg/
ml cisplatin for 24 h

Up (in treated
cells with
DDP)

c-Myc Cisplatin-mediated miR-145
downregulation via targeting c-
Myc by modulating PD-L1 could
contribute to cisplatin resistance
in OC cells.

(75)

Epithelial
Ovarian
Cancer

Olaparib,
Radiation

miR-200c-3p
(-)

5 EOC tissue samples SKOV3; treated with 1.5
and 5 µM Olaparib after
48 h post-Olaparib
treatment, irradiated 4
Gy

PD-L1 c-Myc,
b-catenin

miR-200c-3p by combinatorial
therapies could contrast the
induction of PD-L1 and via
downregulating the c-Myc/b-
catenin could decrease cell
proliferation.

(76)

(Continued)
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expression of VEGFA and PD-1/PD-L1 via affecting FGD5-AS1/

miR-454–3p/ZEB1 axis (71). Moreover, nobiletin has been

shown to regulate PD-L1 expression through the modulation

of STAT3, thus inhibiting the progression of NSCLC (72).

Meanwhile, miR-34a via targeting PD-L1 could attenuate

glioma cell invasion and their chemoresistance (85).
Discussion

PD-L1 has been found to participate in the tumorigenesis

process via induction of Tregs and inhibition of antitumor
Frontiers in Immunology 11
immune responses. Besides, several non-coding RNAs can act as

regulators of gene expression, particularly at the posttranscriptional

level to affect the expression of PD-L1. In fact, a delicate interactive

network exists between non-coding RNAs that influence the

expression of PD-L1. Several lncRNA/miRNA or circRNA/

miRNA modules have been found in this network. MIR17HG/

miR-17-5p, KCNQ1OT1/miR-30a-5p, hsa_circ_0136666/miR-497,

circ-EIF3K/miR-214, circ-CDR1-AS/miR-7, HOXA-AS3/miR-455-

5p, PCED1B-AS1/hsa-miR-194-5p, LINC00657/miR-424,

LINC00657/miR-424, hsa_circ_0003288/miR-145, PROX1-AS1/

miR-877-5p, HIF1A-AS2/miR-429, SNHG15/miR-141, PSMB8-

AS1/miR-382-3p, LINC00473/miR-195‐5p, OIP5-AS1/miR-34a,
TABLE 7 Continued

Type of
Diseases

Drug Non-
coding
RNAs

Sample Cell line PD-L1
Expression

Other
Targets

Function Ref

CRC Polydatin miR-382
(-)

C57BL/6 mice 293T, (Caco-2, HCT
116); treated with 50,
100, 150 µM Polydatin

Down PCNA,
Caspase-3

Polydatin could induce an
antitumor effect by targeting the
miR-382/PD-L1 axis in CRC
cells.

(77)

Esophageal
Cancer

Sevoflurane Circ-VIM
(Up-
regulated),
miR-124

20 pairs of EC and
paratumoral tissues,
BALB/C nude mice;
treated with 40 mg/kg
Sevoflurane, IV, for every
2 days

PBMCs, 293T, HET-1A,
TE-10, TE-11, (KYSE-
150, Eca-109); treated
with 1% to 4%
sevoflurane for 6 h

Up Slug,
Fibronectin,
E/N-
cadherin,
Ras, ERK1/
2

Circ-VIM silencing has a
synergic effect with sevoflurane
by regulating the miR-124/PD-
L1 axis.

(78)

GC Cisplatin NUTM2A-
AS1 (Up-
regulated),
miR-376a

NOD-SCID mice GES-1, 293 T, HDLEC,
(HGC-27, SNU-1);
treated with 1 µmol/L
cisplatin for 0, 24, 48,
72 h

– TET1,
HIF-1A

LncRNA NUTM2A-AS1 via
targeting miR-376a by regulating
TET1 and HIF-1A could
enhance GC tumorigenesis and
drug resistance.

(79)

GC TRAIL miR-429
(-)

– MKN45, BGC823,
SGC7901, HGC27;
treated with 100 ng/ml
TRAIL for 6 days

PD-L1 AKT,
Caspase-3,
EGFR,
mTOR

miR-429-mediated regulation of
PD-L1 affects the sensitivity of
GC cells to TRAIL.

(80)

HCC Sorafenib
(SR)

miR-1
(Up)

SPF BALB/c nude mice Hep3B, HepG2, 293T,
HepG2/SR and Hep3B/
SR

Up (in cells
treated with
SR)

NRF-2, P-
gp, MRP1,

NRF-2/miR-1/regulatory axis via
targeting PD-L1 contributes to
the development and
maintenance of drug resistance.

(81)

HCC SR KCNQ1OT1
(Up),
miR-506

SR-sensitive (n=25) and
SR resistant (n=38) HCC
tissue samples

SK-HEP-1, Huh-7, SK-
HEP-1/SR, Huh-7/SR;
treated with 1-3 µM
Sorafenib for 48 h

Positive
correlation
with
KCNQ1OT1

TNF-a,
IFN-g,
IL2/10,
TGF-b

LncRNA KCNQ1OT1 via
sponging miR-506 could
contribute to SR resistance and
PD-L1-mediated immune escape
in HCC cells.

(82)

BCa Oleuropin miR-194
(-)

21 pairs of BC and
paratumoral tissues

MDA-MB-231; treated
with 200 mM Oleuropin
for 72 h

Up XIST Oleuropin via modulating the
miR-194/XIST/PD-L1 axis could
repress BCa progression.

(83)

BCa Adriamycin
(ADR)

miR-3609
(Down-
regulated)

47 BCa tissue samples and
19 paratumoral tissues

293T, HBL-100,
MCF-7, MDA-MB-231,
MDA-MB-468, (MCF-
7/ADR); treated with
0.001, 0.01, 0.1, 1, 10,
100 mg/mL ADR for 48
h

Up (in treated
cells with
ADR)

– miR-3609 by blocking the PD-
L1 immune checkpoint could
sensitize BCa cells to ADR.

(84)

Glioma Paclitaxel miR-34a
(Down-
regulated)

21 glioma patients U251, U87-MG, U87/P;
treated with 0-200 nM
Paclitaxel for 24-72 h

Up Caspase-3 miR-34a via targeting PD-L1
could attenuate glioma cell
invasion and chemoresistance.

(85)
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MALAT1/miR-200a-3p, circ_0000284/miR-377-3p, circ-CPA4/

miR-let-7, circ-CHST15/miR-155-5p, circ-CHST15/miR-194-5p,

EMX2OS/miR-654-3p, Lnc-OC1/miR-34a, MEG3/miR-216a,

GATA3-AS1/miR-676-5p, LINC00657/miR‐106a and MALAT1/

miR-195 are examples of these modules.

In addition to the above-mentioned PD-L1-interacting non-

coding RNAs, several non-coding RNAs can indirectly affect the

activity of the PD-1/PD-L1 pathway (86). For instance, the up-

regulated lncRNA in diffuse large B cell lymphoma SNHG14 adsorbs

miR-5590-3p to enhance expression levels of ZEB1, thus activating

the PD-1/PD-L1 pathway and inducing immune evasion (87).

The interactions between non-coding RNAs and PD-L1 are

also involved in the response of patients to several anti-cancer

modalities. These interactions can also be affected by the

administration of several treatment modalities. Cisplatin,

Adriamycin, Paclitaxel, Thalidomide, Nobiletin, Olaparib,

Sevoflurane, Sorafenib, and Oleuropin are examples of drugs

that can affect/be affected by such interactions.

Most importantly, several PD-L1-related non-coding RNAs

have been found to be secreted in exosomes originated from

tumor cells’ microenvironment residing cells. This finding not

only shows the extensive impacts of these non-coding RNAs in

tumor progression or modulation of the tumor microenvironment

but also potentiates these transcripts as biomarkers for the early

detection of cancer using biofluids.

The promising results of clinical trials of anti-PD-L1 during

recent years have encouraged researchers to find better

treatment modalities to enhance the clinical response to these

modalities. Non-coding RNAs are putative modulators of PD-L1

expression and activity, and thus can be used as therapeutic

targets in this regard. Moreover, expression levels of PD-L1-

associated non-coding RNAs can be used as predictive markers

for response to PD-L1 inhibitors. In fact, the lack of appropriate

response to this type of therapy can be attributed to the levels of

expressions of PD-L1-associated non-coding RNAs. Thus,

modulation of expression of these transcripts using siRNA or

antisense oligonucleotides can enhance clinical response to anti-

PD-L1 therapy. Application of these methods needs a prior

identification of the pattern of expression of PD-L1-associated

non-coding RNAs in patients’ samples and the functional

network between these transcripts and PD-L1. This can be

achieved using high throughput sequencing methods with a

system biology approach. Future studies are needed to propose

tissue-specific panels of non-coding RNAs for this purpose.
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